
LLNL-JRNL-484926

High Statistics Analysis using Anisotropic
Clover Lattices: (IV) Volume Dependence
of Light Hadron Masses

S. Beane, E. Chang, W. Detmold, H. W. Lin, T. Luu, K.
Orginos, A. Parreno, M. Savage, A. Torok, A.
Walker-Loud

May 26, 2011

Physical Review D



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



UNH-11-2
JLAB-THY-11-1364
NT@UW-11-04
IUHET-558
NT-LBNL-11-009
UCB-NPAT-11-006

High Statistics Analysis using Anisotropic Clover Lattices: (IV)
Volume Dependence of the Light Hadron Masses

S.R. Beane,1, 2 E. Chang,3 W. Detmold,4, 5 H.W. Lin,6 T.C. Luu,7

K. Orginos,4, 5 A. Parreño,3 M.J. Savage,6 A. Torok,8 and A. Walker-Loud9

(NPLQCD Collaboration)
1Albert Einstein Zentrum für Fundamentale Physik,

Institut für Theoretische Physik, Sidlerstrasse 5, CH-3012 Bern, Switzerland
2Department of Physics, University of New Hampshire, Durham, NH 03824-3568, USA

3Dept. d’Estructura i Constituents de la Matèria. Institut de Ciències del Cosmos (ICC),
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Abstract
The volume dependence of the octet baryon masses and relations among them are explored with
Lattice QCD. Calculations are performed with nf = 2 + 1 clover fermion discretization in four
lattice volumes, with spatial extent L ∼ 2.0, 2.5, 3.0 and 3.9 fm, with an anisotropic lattice spacing
of bs ∼ 0.123 fm in the spatial direction, and bt = bs/3.5 in the time direction, and at a pion
mass of mπ ∼ 389 MeV. The typical precision of the ground-state baryon mass determination is
<∼ 0.2%, enabling a precise exploration of the volume dependence of the masses, the Gell-Mann–
Okubo mass relation, and of other mass combinations. A comparison with the predictions of heavy
baryon chiral perturbation theory is performed in both the SU(2)L⊗SU(2)R and SU(3)L⊗SU(3)R
expansions. Predictions of the three-flavor expansion for the hadron masses are found to describe
the observed volume dependences reasonably well. Further, the ∆Nπ axial coupling constant is
extracted from the volume dependence of the nucleon mass in the two-flavor expansion, with only
small modifications in the three-flavor expansion from the inclusion of kaons and η’s. At a given
value of mπL, the finite-volume contributions to the nucleon mass are predicted to be significantly
smaller at mπ ∼ 140 MeV than at mπ ∼ 389 MeV due to a coefficient that scales as ∼ m3

π.
This is relevant for the design of future ensembles of lattice gauge-field configurations. Finally,
the volume dependence of the pion and kaon masses are analyzed with two-flavor and three-flavor
chiral perturbation theory.
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I. INTRODUCTION

The calculation of the properties and interactions of light nuclei is a major goal of Lattice
QCD. While Lattice QCD calculations at the physical light-quark masses, including strong
isospin breaking and electroweak interactions, are a number of years in the future, precision
calculations of hadron masses are being performed today in the isospin limit and without
electroweak interactions over a range of light-quark masses. The masses of the baryons are
in the GeV energy regime, but the typical excitation energies and binding energies found in
light nuclei are in the MeV energy regime. This hierarchy presents a significant challenge for
Lattice QCD calculations as correlation functions must be determined with exceptionally
high precision in order to obtain statistically significant energy differences that yield nuclear
excitation and binding energies.

A source of systematic uncertainty in the extraction of scattering parameters and nuclear
binding energies is the volume dependence of the hadron masses themselves. Given that
the deuteron binding energy is BD ∼ 2.225 MeV, an accurate Lattice QCD calculation of
this energy will require that the nucleon mass be known to ∆MN # 1 MeV. This includes
the contribution from the finite lattice volume. Further, the exponential volume corrections
to Lüscher’s eigenvalue relation [1–3] are also required to be small [4, 5]. In our recent
calculation of the H-dibaryon binding energy [6], the volume dependence of the Λ-baryon
mass was presented, and it was concluded that the standard rule-of-thumb, mπL>∼ 2π, is in
fact necessary at a pion mass of mπ ∼ 389 MeV in order for the Λ finite-volume mass shift
to be much smaller than the observed binding energy.

In this work, which is a continuation of our high statistics Lattice QCD explorations [7–9],
we present results for the volume dependence of the masses of the baryons in the lowest-lying
SU(3)-flavor octet, and of relations among them, calculated with four ensembles of nf = 2+1
anisotropic clover gauge-field configurations at a pion mass of mπ ∼ 389 MeV with a spatial
lattice spacing of bs ∼ 0.123 fm, an anisotropy of ξ = 3.5 and with cubic volumes of spatial
extent L ∼ 2.0, 2.5, 3.0 and 3.9 fm. The volume dependence of the pion and kaon masses are
also determined. Having the multiple lattice volumes with all of the other parameters fixed
is critical to fully understanding the volume dependence of the hadron masses and other
quantities. In particular, lattice-spacing artifacts are the same to very high precision. The
results of the Lattice QCD calculations are compared with the expectations from next-to-
leading-order (NLO) chiral perturbation theory (χPT) and heavy-baryon chiral perturbation
theory (HBχPT) with two and three flavors of active quarks 1. While it is important to
compare the calculated volume dependences with the corresponding expectations from low-
energy effective field theories (EFT), perhaps the most important reason for such a study is
in order to plan for the future production of ensembles of lattice gauge-field configurations.
Not only is it important to have a spatial size that is large enough for the extraction of
nuclear excitations and bindings, it is also important to have time directions that are long
enough for the correlation functions to have plateaued sufficiently for the required precision
before backwards propagating (thermal) states destroy the signal. An interesting result
of this study is that while the octet baryons experience significant and quantifiable finite-
volume corrections, the pion and the kaon, whose masses are determined at the 0.1% level,

1 The leading volume dependence of the hadron masses arises at NLO in the chiral expansion. The leading

order (LO) contribution to the nucleon mass, from a local operator, makes a vanishing contribution to its

volume dependence.
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show effectively no finite-volume effects. That is, the pions and kaons are in the infinite-
volume regime for the pion mass and the range of volumes that we explore. These results
are consistent with the expectations derived from χPT and HBχPT.

The first realistic attempt to determine the coefficients of counterterms in the chiral
Lagrangian from the volume dependence of the nucleon mass was performed in Ref. [10].
The coefficients in the SU(2)L⊗SU(2)R chiral Lagrangian without dynamical ∆’s were con-
strained by the results of nf = 2 Lattice QCD calculations using the clover discretization
with mπ

>∼ 550 MeV and with lattices of spatial extent L<∼ 2.2 fm. The precision of these
calculations was substantially lower than in the present work, nonetheless, nontrivial con-
straints were found on the values of coefficients in the chiral Lagrangian at NNLO in the
expansion by using phenomenologically determined values for the NLO constants. These
constraints should be viewed only as a demonstration of the method, given the large pion
masses.

This paper is organized as follows. In section II, we formulate finite-volume correction
formulas for octet-baryon masses to NLO in SU(2)L⊗SU(2)R and SU(3)L⊗SU(3)R HBχPT.
Section III gives a concise description of the specific Lattice QCD calculations that are
used in the present finite-volume study. In section IV, we analyze the octet-baryon finite-
volume effects, first (in subsection IVA) using a simple, intuitive description, and then (in
subsection IVB) using HBχPT. In subsection IVC, various combinations of baryon masses
are likewise analyzed. In section V, we consider the finite-volume dependence of the pion
and kaon masses and in section VI we conclude.

II. FINITE-VOLUME CHIRAL PERTURBATION THEORY

A. The Nucleon in SU(2)L ⊗ SU(2)R HBχPT

As the Goldstone bosons are the lightest hadrons, χPT is the appropriate tool to develop
systematic expansions to describe finite-volume effects [11–13]. The crucial observation is
that if the hadronic system is in a sufficiently large volume, then the infinite-volume chiral
Lagrangian can be used to calculate finite-volume corrections, with no further operators
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required 2. At NLO in HBχPT, the finite-volume corrections to the nucleon mass arise
from one-loop self-energy diagrams with nucleon and ∆ intermediate states and are given
by [10, 17] 3

δMN = MN(mπ, L)−MN(mπ,∞) ;

=
9m3

πg
2
A

8πf 2
π

F (FV )
N (mπL) +

m3
πg

2
∆Nπ

πf 2
π

F (FV )
∆ (mπL,∆∆NL) , (3)

where the loop functions are defined to be

F (FV )
N (x) =

1

6

∑

n !=0

e−|n|x

|n|x =
e−x

x
+ 2

e−
√
2x

√
2x

+
4

3

e−
√
3x

√
3x

+ ... ; (4)

F (FV )
∆ (x, y) =

1

3π

∑

n !=0

∫ ∞

0

dw β(w,
y

x
)

[
β(w,

y

x
) K0

(
|n|xβ(w, y

x
)
)
−

K1

(
|n|xβ(w, y

x)
)

|n|x

]
;

(5)

where β(w, z) =
√
w2 + 2zw + 1, ∆∆N = M∆ − MN , and the limit of exact isospin

symmetry is assumed. The Kn(z) are modified Bessel functions. In the limit ∆ → 0,

F (FV )
∆ (mπL,∆L) → F (FV )

N (mπL). For asymptotically large lattice volumes, it is expected
that only the leading contributions in the sums in eq. (4) and eq. (5) will be relevant.

2 The finite-volume corrections are related to forward scattering amplitudes [14–16]. For instance [15],

MN (mπ, L)−MN (mπ,∞) = MN
3ε2π
4π2

∑

n !=0

1

|n|mπL

[
2πεπg

2
πNe−|n|mπL

√
1−ε2π

−
∫ ∞

−∞
dy D̃+(y) e−|n|mπL

√
1+y2

]
+ O(e−ML) , (1)

where επ = mπ/(2MN ), M ≥
√
3/2mπ and D̃+(y) = MN D+(imπy, 0), which is related to forward πN

scattering via

T (πa(q) +N(p) → πa′
(q′) +N(p′)) = δaa′T+ +

1

2
[τa′ , τa] T−

T± = u′
[
D±(ν, t) − 1

4MN
[q/, q/] B±(ν, t)

]
u . (2)

The strong coupling between the nucleon and pion is gπN , which is related to the axial coupling constant

via the chiral expansion gπN = gAMN

√
2/fπ + ... where fπ ∼ 132 MeV. Evaluating eq. (1) at NLO in

HBχPT recovers the perturbative result of eq. (3).
3 The substitutions w → λ/mπ, z → ∆/mπ, β(w,

y
x ) → β∆/mπ, y → ∆L, x → mπL, and F (FV )

∆ (x, y) →
−K(∆)/(3πm3

π) recover the expressions given in Ref. [17].
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B. The Hyperons in SU(2)L ⊗ SU(2)R HBχPT

It is straightforward to compute the finite-volume corrections to the hyperon masses at NLO
in SU(2)L ⊗ SU(2)R HBχPT. One finds, in a generalization of eq. (3), that

δMΛ =
3 g2ΛΣ m3

π

8πf 2
π

F (FV )
∆ (mπL,∆ΣΛL) +

3g2Σ∗Λπ m3
π

2πf 2
π

F (FV )
∆ (mπL,∆Σ∗ΛL) ; (6)

δMΣ =
g2ΛΣ m3

π

8πf 2
π

F (FV )
∆ (mπL,∆ΛΣL) +

3g2ΣΣ m3
π

4πf 2
π

F (FV )
N (mπL)

+
g2Σ∗Σπ m3

π

2πf 2
π

F (FV )
∆ (mπL,∆Σ∗ΣL) ; (7)

δMΞ =
9g2ΞΞ m3

π

8πf 2
π

F (FV )
N (mπL) +

3g2Ξ∗Ξπ m3
π

4πf 2
π

F (FV )
∆ (mπL,∆Ξ∗ΞL) , (8)

where ∆AB ≡ MB − MA. For definitions of the various axial couplings in terms of chiral
Lagrangian operators, see Ref. [18]. In this formulation of hyperon finite-volume effects, the
contributions from kaon and η loops are in the coefficients of local operators, and therefore
do not contribute until higher orders in the chiral expansion (as the finite-volume effects
arise from pion loops). This implies that for quark masses sufficiently close to the flavor-
SU(3) limit, important finite-volume effects will not be accounted for systematically in the
two-flavor expansion.

C. The Baryon Octet in SU(3)L ⊗ SU(3)R HBχPT

In addition to the contributions to the volume dependence from higher orders in the
SU(2)L ⊗ SU(2)R chiral expansion, there are contributions from quantum fluctuations of
the nucleon into strange hadrons, and of the hyperons into other members of the baryon
octet. For instance, in addition to the πN and π∆ intermediate states that give finite
volume contributions to the nucleon mass, intermediate states such as ΛK or Nη also con-
tribute. Such fluctuations give rise to a volume dependence that scales as ∼ m2

K e−mKL/L
or ∼ m2

η e−mηL/L. In the Lattice calculations presented in this paper, mK/mπ ∼ 1.4, and
as a result, such contributions are naively expected to be of the same magnitude as the
∼ m2

π e−
√
2mπL/L contributions, which are suppressed compared with the leading volume

dependence. As the axial-couplings between the nucleons and pions are of order one, and
the couplings to strange intermediate states are generically small, such strange contributions
are expected to be small. The explicit contributions to the octet-baryon mass shifts, written
in terms of the SU(3)-symmetric axial couplings D, F and C [19] are for the nucleon,

δM (K,η)
N = (D − F )2

9m3
K

8πf 2
K

F (FV )
∆ (mKL,∆ΣNL) + (D + 3F )2

m3
K

8πf 2
K

F (FV )
∆ (mKL,∆ΛNL)

+ (D − 3F )2
m3

η

8πf 2
η

F (FV )
∆ (mηL, 0) + C2 m3

K

4πf 2
K

F (FV )
∆ (mKL,∆Σ∗NL) , (9)
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and for the hyperons,

δM (K,η)
Λ = (D + 3F )2

m3
K

4πf 2
K

F (FV )
∆ (mKL,∆NΛL) + (D − 3F )2

m3
K

4πf 2
K

F (FV )
∆ (mKL,∆ΞΛL)

+ D2 m3
η

2πf 2
η

F (FV )
∆ (mηL, 0) + C2 m3

K

2πf 2
K

F (FV )
∆ (mKL,∆Ξ∗ΛL) , (10)

δM (K,η)
Σ = (D − F )2

3m3
K

4πf 2
K

F (FV )
∆ (mKL,∆NΣL) + (D + F )2

3m3
K

4πf 2
K

F (FV )
∆ (mKL,∆ΞΣL)

+ D2 m3
η

2πf 2
η

F (FV )
∆ (mηL, 0) + C2 m3

η

4πf 2
η

F (FV )
∆ (mηL,∆Σ∗ΣL)

+ C2 2m
3
K

3πf 2
K

F (FV )
∆ (mKL,∆∆ΣL) + C2 m3

K

6πf 2
K

F (FV )
∆ (mKL,∆Ξ∗ΣL) , (11)

δM (K,η)
Ξ = (D + F )2

9m3
K

8πf 2
K

F (FV )
∆ (mKL,∆ΣΞL) + (D − 3F )2

m3
K

8πf 2
K

F (FV )
∆ (mKL,∆ΛΞL)

+ (D + 3F )2
m3

η

8πf 2
η

F (FV )
∆ (mηL, 0) + C2 m3

η

4πf 2
η

F (FV )
∆ (mηL,∆Ξ∗ΞL)

+ C2 m3
K

4πf 2
K

F (FV )
∆ (mKL,∆Σ∗ΞL) + C2 m3

K

2πf 2
K

F (FV )
∆ (mKL,∆ΩΞL) . (12)

In the limit of exact SU(3) symmetry, the SU(2) axial couplings introduced above are related
to the SU(3) couplings via:

gA = D + F , C = g∆Nπ , gΛΣ = 2D , gΣ∗Λπ = C/
√
2 ,

gΣΣ = 2F , gΣ∗Σπ = C/
√
3 , gΞΞ = D − F , gΞ∗Ξπ = C/

√
3 . (13)

Adding the finite-volume modifications in eqs. (9)-(12) to those in eq. (3) and eqs. (6)-(8)
gives the full NLO SU(3)L ⊗ SU(3)R HBχPT finite-volume contributions to the baryons in
the lowest-lying octet.

III. DETAILS OF THE LATTICE QCD CALCULATION

Anisotropic gauge-field configurations have proven useful for the study of hadronic spec-
troscopy [20–23], and as the calculations required for studying multi-hadron systems rely
heavily on spectroscopy, we have put considerable effort into calculations using ensembles
of gauge fields with clover-improved Wilson fermion actions with anisotropic lattice spacing
that have been generated by the Hadron Spectrum Collaboration (HSC). In particular, the
nf = 2 + 1 flavor anisotropic clover Wilson action [24, 25] with stout-link smearing [26] of
the spatial gauge fields in the fermion action with a smearing weight of ρ = 0.14 has been
used. The gauge fields entering the fermion action are not smeared in the time direction,
thus preserving the ultra-locality of the action in the time direction. Further, a tree-level
tadpole-improved Symanzik gauge action without a 1× 2 rectangle in the time direction is

7



used. Anisotropy allows for a better extraction of the excited states as well as additional
confidence that plateaus in the effective mass plots (EMP’s) formed from the correlation
functions have been observed, significantly reducing the systematic errors in observables
due to fitting.

The present calculations are performed on four ensembles of gauge-field configurations
with L3×T of 163×128, 203×128, 243×128 and 323×256 lattice sites, with an anisotropy
of bt = bs/ξ with ξ = 3.5. The spatial lattice spacing of each ensemble is bs = 0.1227 ±
0.0008 fm [22] giving spatial lattice extents of L ∼ 2.0, 2.5, 3.0 and 3.9 fm respectively.
The same input light-quark mass parameters, btml = −0.0840 and btms = −0.0743, are
used in the production of each ensemble, giving a pion mass of mπ ∼ 389 MeV. The
relevant quantities to assign to each ensemble that determines the impact of the finite lattice
volume are mπL and mπT , which for the four ensembles are mπL ∼ 3.86, 4.82, 5.79 and 7.71
respectively, and mπT ∼ 8.82, 8.82, 8.82 and 17.64 respectively.

Multiple light-quark propagators were calculated on each configuration in the four en-
sembles. The source locations were chosen randomly in an effort to minimize correlations
among propagators. On the {163× 128, 203× 128, 243× 128, 323× 256} ensembles, an aver-
age of {224, 364, 180, 174} propagators were calculated on each of {2001, 1195, 2215, 739}
gauge-field configurations, to give a total number of ∼ {4.5, 4.3, 3.9, 1.3}× 105 light-quark
propagators, respectively. The EMP’s for the nucleon on all of the time slices of each lattice
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FIG. 1: The nucleon EMP’s obtained in the four lattice volumes. Note that the temporal extent
of the 323 × 256 ensemble is twice that of the other three ensembles.

ensemble are shown in fig. 1. They provide an indication of the precision of the present
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calculations.

IV. THE VOLUME DEPENDENCE OF THE BARYON MASSES

The baryon masses that were extracted from the Lattice QCD calculations in the four
different lattice volumes are given in table I. A detailed discussion of the fitting methods
used in the analysis of the correlation functions is given in Refs. [7–9, 27].

TABLE I: Results from the Lattice QCD calculations in the four lattice volumes.

L3 × T 163 × 128 203 × 128 243 × 128 323 × 256

L (fm) ∼ 2.0 ∼2.5 ∼3.0 ∼3.9

mπL 3.888(20)(01) 4.8552(84)(35) 5.799(16)(04) 7.7347(74)(91)

e−mπL ∼0.0205 ∼0.0078 ∼0.0030 ∼0.00044
1

mπL
e−mπL ∼5.3× 10−3 ∼1.6× 10−3 ∼5.2× 10−4 ∼5.7× 10−5

1
(mπL)3/2

e−mπL ∼2.7× 10−3 ∼7.4× 10−4 ∼2.2× 10−4 ∼2.1× 10−5

mπT 8.89(16)(01) 8.878(54)(22) 8.836(85)(02) 17.679(59)(73)

e−mπT ∼1.38× 10−4 ∼1.39× 10−4 ∼1.45× 10−4 ∼2.10× 10−8

MN (t.l.u.) 0.21004(44)(85) 0.20682(34)(45) 0.20463(27)(36) 0.20457(25)(38)

MΛ (t.l.u.) 0.22446(45)(78) 0.22246(27)(38) 0.22074(20)(42) 0.22054(23)(31)

MΣ (t.l.u.) 0.22861(38)(67) 0.22752(32)(43) 0.22791(24)(31) 0.22726(24)(43)

MΞ (t.l.u.) 0.24192(38)(63) 0.24101(27)(38) 0.23975(20)(32) 0.23974(17)(31)

A. A Simplistic Analysis

It is useful to begin the analysis of the volume dependence of the baryon masses by per-
forming a straightforward, but only partly motivated, fit to results of the Lattice QCD
calculations given in table I. As shown previously, the volume dependence of the mass of a
given baryon can be calculated order-by-order in HBχPT. The formally-leading contribution
to the volume dependence of the mass of an octet baryon results from a one-loop diagram
involving a pion and an octet baryon (ignoring for the moment the contribution from nearby
baryons not in the octet, such as the decuplet). These one-loop contributions give rise to

a volume dependence of the form given in eq. (4), F (FV )
N (mπL). In obtaining this result, it

is assumed that mπL is large, but significantly smaller than mXL where mX is the mass of
other mesons, such as the kaon and the η, i.e. mK ,mη + mπ. In the very-large volume
limit, the finite-volume contributions are dominated by the first term in eq. (4). As such, it
is useful, as a preliminary analysis, to fit a function of the form

M (V )
B (mπL) = M (∞)

B + c(V )
B

e−mπL

mπL
(14)

to the results of the Lattice QCD calculations given in table I. One should view the param-
eter c(V )

B as providing an estimate of the strength of the axial coupling between the pion and
the baryon. It should be stressed that the higher-order terms, beginning with terms of order
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e−
√
2 mπL/(mπL), do give a non-negligible contribution in the 163 × 128 lattice volume, and

a fit to the function in eq. (4) leads to slightly reduced values of c(V )
B determined in the fits

to eq. (14). The fits to each of the baryon masses are shown, along with the results of the
Lattice QCD calculations, in fig. 2. The same vertical scale (but different interval) has been
used in the plots in fig. 2 in order for the reader to easily determine the relative size of the
volume dependence of each of the masses. The values of the infinite-volume masses, M (∞)

B ,
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FIG. 2: The mass of the nucleon (upper left panel), the Λ (upper right panel), the Σ (lower left
panel) and the Ξ (lower right panel) as a function of e−mπL/(mπL). The points and associated
uncertainties (blue) are the results of the Lattice QCD calculations. The dark (light) shaded region
corresponds to the 1σ statistical uncertainty (statistical and systematic uncertainties combined in
quadrature) associated with a fit of the form given in eq. (14).

and the coefficients of the leading volume dependences, c(V )
B , are presented in table II. The

nucleon is found to have the largest volume dependence. As the nucleon is comprised of light
valence quarks only, it is expected to couple most strongly to pions, which should dominate
its finite-volume modifications in the large-volume limit. It is expected that baryons with
more strange quarks exhibit less volume sensitivity, and that the finite-volume mass shifts
to the baryons, δ(FV )B, should naively satisfy the hierarchy

δ(FV )N > δ(FV )Σ , δ(FV )Λ > δ(FV )Ξ . (15)

The fit coefficients of e−mπL/(mπL) given in table II are shown in fig. 3, where the expected
hierarchy is approximately observed within the uncertainties of the calculation. The volume-
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TABLE II: The results of linear fits, of the form given in eq. (14), to the volume dependence of

the baryon masses. M (∞)
B is the infinite-volume extrapolation of the baryon mass and c(V )

B is the
coefficient of e−mπL/(mπL). The first uncertainty is statistical, the second is the fitting systematic,
and the third (where appropriate) is due to scale setting.

Hadron M (∞)
B (t.l.u.) M (∞)

B (MeV) c(V )
B (t.l.u.) c(V )

B (MeV)

MN 0.20427(17)(19) 1149.8(1.0)(1.1)(7.5) 1.15(09)(14) 6.47(51)(78)(04)× 103

MΛ 0.22053(15)(21) 1241.2(0.9)(1.1)(8.1) 0.83(09)(12) 4.64(53)(69)(03)× 103

MΣ 0.22744(17)(22) 1280.3(1.0)(1.1)(8.3) 0.21(09)(13) 1.19(48)(71)(08)× 103

MΞ 0.23972(13)(18) 1349.4(0.8)(1.1)(8.8) 0.47(08)(11) 2.62(44)(60)(02)× 103

dependence of the Σ is somewhat smaller than naive expectations would suggest.

N Λ Σ Ξ
Baryon

0

0.25

0.50

0.75

1.00

1.25

c B(V
)   (

t.l
.u

.)

FIG. 3: The fit values of c(V )
B , the coefficient of e−mπL/(mπL) in eq. (14), given in table II for each

of the octet baryons.

B. The Octet Baryons with NLO HBχPT

In this section we explore both SU(2)L ⊗ SU(2)R and SU(3)L ⊗ SU(3)R HBχPT predictions
and fits to the results of the Lattice QCD calculations. The analyses are performed at
NLO in the chiral expansion. These calculations do not provide tight constraints on the
counterterms that appear beyond NLO in HBχPT, as they are performed at a single pion
mass with only four lattice volumes. Our strategy in these analyses is to use the octet-octet
axial couplings and the octet-decuplet mass splittings from experimental data and Lattice
QCD results, and fit the octet-decuplet axial couplings and the baryon masses in the infinite-
volume limit to the results of the Lattice QCD calculations, given in table I, using two-flavor
HBχPT. Inserting these fit values into the full three-flavor finite-volume corrections gives a
measure of the relevance of kaon and η loops. The goal is to determine the extent to which
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two- and three-flavor HBχPT describe the volume dependence of the results of the Lattice
QCD calculations. And, of course, it is of interest to determine whether any significant
constraints can be placed on the –with few exceptions, rather poorly known– axial coupling
constants of the baryons by studying finite-volume effects.

1. Parameter Set

Lattice QCD calculations show that the nucleon axial coupling, gA, is essentially indepen-
dent of the light-quark masses [28–31], and so in the following we use the experimentally-
determined value gA = 1.26 as well as the central values of gΛΣ, gΣΣ, and gΞΞ determined
from Lattice QCD calculations [32] interpolated to the appropriate pion mass, or from the
tree-level SU(3) relations between axial couplings at the physical pion mass (which are con-
sistent with each other)

gΛΣ = 1.58 , gΣΣ = 0.90 , gΞΞ = 0.26 . (16)

While the pion decay constant, fπ, is experimentally determined to be fπ ∼ 132 MeV at
the physical light-quark masses, Lattice QCD calculations have determined how it depends
upon the light-quark masses, and at mπ ∼ 389 MeV its value is fπ ∼ 150 MeV [33–36]. We
take the baryon mass splittings determined from octet and decuplet correlation functions
calculated on the 323 × 256 ensemble4:

∆∆N = 298 MeV , ∆ΣN = 128 MeV , ∆ΛN = 90 MeV , ∆Σ∗N = 427 MeV ;

∆ΣΛ = 38 MeV , ∆Σ∗Λ = 336 MeV , ∆ΞΛ = 108 MeV , ∆Ξ∗Λ = 406 MeV ;

∆ΞΣ = 69 MeV , ∆Σ∗Σ = 298 MeV , ∆∆Σ = 229 MeV , ∆Ξ∗Σ = 368 MeV ;

∆Ξ∗Ξ = 298 MeV , ∆Σ∗Ξ = 228 MeV , ∆ΩΞ = 367 MeV . (17)

For the SU(3)L ⊗ SU(3)R HBχPT analysis, the SU(3)-symmetric axial couplings are
fixed to the central values of the best-fit experimental values: D = 0.79, F = 0.47 and
C = 1.47 [37]. Further, the decay constants and masses are set to fK = fη = 160 MeV and
the lattice-determined values mK = 544 MeV, and mη = 587 MeV (the latter determined
from mπ and mK via the Gell-Mann–Okubo (GMO) relation), respectively.

2. The Nucleon Mass

The nucleon EMP’s and fits to the mass plateaus obtained from the results of the Lattice
QCD calculations on the four lattice ensembles are shown in fig. 4. With the input pa-
rameters given in subsection IVB1, a two-parameter fit to the nucleon mass data, given in
table I, can be performed in two-flavor HBχPT to determine the infinite-volume value of
the nucleon mass, M (∞)

N , and the value of the ∆Nπ axial coupling, g∆Nπ. While there have
been many previous determinations of g∆Nπ, we treat it as a fit parameter and compare its
value with the previous extractions. Fitting the expression in eq. (3) to the results given in
table I gives the fit-regions shown in fig. 5, and fit values of

M (∞)
N = 0.20455(19)(17) t.l.u , |g∆Nπ| = 2.80(18)(21) . (18)

4 We do not quote errors on these determinations as they do not significantly affect the NLO HBχPT fits.
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FIG. 4: The Nucleon EMP’s determined on the four lattice ensembles used in this work. They
each result from linear combinations of different correlation functions that optimize the plateau of
the ground state. Note that the y-axis scale is the same in all four panels.

The ratio of couplings

|g∆Nπ|
gA

= 2.22(14)(17) , (19)

can be compared with the value of |g∆Nπ|/gA = 1.56(06) [38] 5 extracted from an analysis of
experimentally-measured πN scattering phase shifts. The difference between these two val-
ues is significant, but as the two extractions have been performed at two different unphysical
pion masses, little can be concluded. On the other hand, direct Lattice QCD calculations of
|g∆Nπ|/gA have been performed [39, 40] over a range of pion masses 6. One such calculation
performed with a pion mass in the vicinity of mπ ∼ 389 MeV gives |g∆Nπ|/gA = 1.47(19).
The finite-volume corrections to the nucleon mass resulting from this value of the coupling
is shown as the dashed (red) curve in fig. 5, and clearly the contribution from the Nπ and

5 The value of |g∆Nπ|/gA in Ref. [38] has been divided by
√
2 in order to match the definition of g∆Nπ

employed in defining eq. (3) [17].
6 The two methods employed in Ref. [40] suggest that there may be a relatively large systematic uncertainty

in their value of |g∆Nπ|/gA beyond that quoted.
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the ∆π intermediate states constitute a large fraction of the finite-volume shift of the nu-
cleon mass. Given the size of the pion mass in the present calculations, mπ/MN ∼ 0.35,
we anticipate that higher orders in HBχPT will change the finite-volume correction at the
∼ 30% level, consistent with the difference between the results of the lattice QCD calcu-
lations and NLO in HBχPT 7. A next-to-next-to-leading order (NNLO) calculation of the
finite-volume contributions to the nucleon mass in HBχPT is required in order to improve
upon this determination of g∆Nπ

8.
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FIG. 5: The mass of the nucleon as a function of e−mπL/(mπL). The dark (light) grey shaded region
corresponds to the 1σ statistical uncertainty (statistical and systematic uncertainties combined in

quadrature) resulting from fitting M (∞)
N and g∆Nπ. Using this value of M (∞)

N , the dot-dashed curve
(green) corresponds to the contribution from octet baryons and pions, the dotted curve (orange)
corresponds to the contribution from octet baryons and kaons or an η, the dashed curve (red)
corresponds to the contribution from octet and decuplet baryons and pions, and the solid curve
(blue) corresponds to the contribution from octet and decuplet baryons and pions, kaons or an η.

7 If instead of using fπ ∼ 150 MeV to evaluate the NLO HBχPT result, the value at the physical pion mass,

fπ ∼ 132 MeV is used, then a value of |g∆Nπ|/gA = 1.76(18) is obtained, consistent within uncertainties

with the extraction from the matrix element of the axial current [39]. The ambiguity in the value of

the decay constant that is used in the NLO contribution will be parametrically reduced by a NNLO

calculation.
8 An alternative, efficient way of capturing the bulk of the volume dependence is to insert the forward

πN scattering amplitude, calculated in HBχPT with explicit ∆ degrees of freedom into eq. 1 [41]. This

procedure has been shown to work remarkably well for the π mass volume dependence [42].
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With these fit parameters and the parameter set previously defined, the effect of kaon
and η loops can be estimated by including the finite-volume corrections given in eq. (9),
the results of which are shown in fig. 5. The contributions from the strange-baryon and
strange-meson intermediate states are estimated to be small, and somewhat improve the
agreement between theory and the Lattice QCD calculation. Including them in the fit of
g∆Nπ to the results of the Lattice QCD calculation gives |g∆Nπ|/gA = 2.10(15)(20), which is
to be compared with the result in eq. (19).
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FIG. 6: Estimates of the finite-volume contributions to the nucleon mass at NLO in HBχPT
for mπ ∼ 389 MeV (upper, blue, solid, which corresponds to the red dashed curve in fig. 5),
mπ ∼ 230 MeV (middle, green, dotted), and mπ ∼ 140 MeV (lower, red, dashed).

As NLO HBχPT reproduces most of the volume dependence of the nucleon mass at
mπ ∼ 389 MeV, and is expected to become more accurate at lighter pion masses, it is
useful to use the NLO expression to estimate the size of the finite-volume contributions
to the nucleon mass at the pion masses other than the current one. In fig. 6 we show
the finite-volume contributions to the nucleon mass that are predicted at NLO in HBχPT
for mπ ∼ 390, 230 and 140 MeV. This makes clear that finite-volume effects are expected
to be significantly smaller at the lighter pion masses for fixed mπL. The values of mπL,
estimated at NLO in HBχPT, for which the finite-volume contributions to the nucleon
mass are δM (FV )

N = 1 MeV at mπ = 390, 230 and 140 MeV are mπL ∼ 6.2, 4.7 and 3.9,

respectively. For δM (FV )
N = 100 keV, the corresponding values are mπL ∼ 8.0, 6.4, and

5.8, respectively. Given the deuteron binding energy, and that nuclear excitation energies
are in the MeV regime, the estimates indicate that mπL>∼ 2π is required at the physical
pion mass in order to eliminate contamination from this class of exponentially-suppressed
finite-volume effects that contaminate the extraction of phase shifts and binding energies
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from Lattice QCD calculations.

3. The Λ Mass
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FIG. 7: The Λ EMP’s determined on the four lattice ensembles used in this work. They each result
from linear combinations of different correlation functions that optimize the plateau of the ground
state. Note that the y-axis scale is the same in all four panels.

The Λ EMP’s and fits to the mass plateaus obtained from the results of the Lattice QCD
calculations for the four lattice ensembles are shown in fig. 7. The fit values of the Λ masses
in the four lattice volumes are given in table I, and are shown as the points with uncertainties
in fig. 8. The shaded regions in fig. 8 show the results of the SU(2)L⊗SU(2)R HBχPT fit to
the volume dependence of the Λ mass using eq. (6) and the value of gΣΛ given in eq. (16).
The fit gives

M (∞)
Λ = 0.22064(15)(19) t.l.u , |gΣ∗Λπ| = 2.21(16)(23) . (20)

If instead of fitting gΣ∗Λπ, flavor SU(3) symmetry is used to relate it to g∆Nπ, gΣ∗Λπ =
g∆Nπ/

√
2 = 1.3, then the contribution from Σ intermediate states and from Σ and Σ∗

intermediate states are shown as the dot-dashed (green) and dashed (red) curves in fig. 8,
respectively. Comparing these expectations with the results of the Lattice QCD calculations,
manifested in the fit value of gΣ∗Λπ being ∼ 40% larger than phenomenological expectations,
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indicates that higher orders in two-flavor χPT are important, or that the strange quark
plays a role in the finite-volume contributions through kaons or an η.

As with the nucleon, we can now estimate the effects of kaon and η loops by including
the finite-volume corrections given in eq. (10). This gives rise to the curves shown in fig. 8.
(Note that the same values for the input parameters are used to generate the curves in
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FIG. 8: The mass of the Λ as a function of e−mπL/(mπL). The dark (light) grey shaded region
corresponds to the 1σ statistical uncertainty (statistical and systematic uncertainties combined in

quadrature) resulting from fittingM (∞)
Λ and gΣ∗Λπ. Using this value of M (∞)

Λ , the dot-dashed curve
(green) corresponds to the contribution from octet baryons and pions, the dotted curve (orange)
corresponds to the contribution from octet baryons and kaons or an η, the dashed curve (red)
corresponds to the contribution from octet and decuplet baryons and pions, and the solid curve
(blue) corresponds to the contribution from octet and decuplet baryons and pions, kaons or an η.

fig. 8 as are used in the case of the nucleon). The dot-dashed (green) and dashed (red)
curves are the contributions from pions, while the dotted (orange) and solid (blue) curves
correspond to the sum of contributions from pions, kaons and an η. The pions make the
largest contribution to the volume dependence of the mass of the Λ, but, unlike in the case
of the nucleon, the kaons and η contribute significantly. It is interesting to note that the
NLO contribution in three-flavor HBχPT (blue curve) agrees well with the results of the
Lattice QCD calculation. However, NLO HBχPT is expected to be modified at the ∼ 30%
level by higher orders in the expansion.
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4. The Σ Mass
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FIG. 9: The Σ EMP’s determined on the four lattice ensembles used in this work. They each result
from linear combinations of different correlation functions that optimize the plateau of the ground
state. Note that the y-axis scale is the same in all four panels.

The Σ EMP’s and fits to the mass plateaus obtained from the results of the Lattice QCD
calculations on the four lattice ensembles are shown in fig. 9. The fit values of the Σ masses
in the four lattice volumes are given in table I, and are shown as the points with uncertainties
in fig. 10. The shaded regions in fig. 10 show the results of the SU(2)L ⊗ SU(2)R HBχPT
fit to the volume dependence of the Σ mass using eq. (7) with the axial couplings given in
eq. (16). The fit gives

M (∞)
Σ = 0.22747(17)(19) t.l.u , 0 < |gΣ∗Σπ| < 1.38[1.90] , (21)

where we have quoted a 68% confidence interval for gΣ∗Σπ including statistical errors and
statistical and systematic errors added in quadrature (bracketed). If instead of fitting gΣ∗Σπ,
the SU(3) relation is used, gΣ∗Σπ = g∆Nπ/

√
3 = 1.07, then the contribution from Σ, Λ

intermediate states and from Σ, Λ and Σ∗ intermediate states are shown as the dot-dashed
(green) and dashed (red) curves in fig. 10, respectively. The NLO SU(3)L⊗SU(3)R HBχPT
prediction (blue curve) is somewhat higher than the result of the Lattice QCD calculation
in the smallest volume, but not significantly so. It should be added that the SU(3) value
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FIG. 10: The mass of the Σ as a function of e−mπL/(mπL). The dark (light) grey shaded region
corresponds to the 1σ statistical uncertainty (statistical and systematic uncertainties combined in

quadrature) resulting from fittingM (∞)
Σ and gΣ∗Σπ. Using this value of M (∞)

Σ , the dot-dashed curve
(green) corresponds to the contribution from octet baryons and pions, the dotted curve (orange)
corresponds to the contribution from octet baryons and kaons or an η, the dashed curve (red)
corresponds to the contribution from octet and decuplet baryons and pions, and the solid curve
(blue) corresponds to the contribution from octet and decuplet baryons and pions, kaons or an η.

of the coupling constant, gΣ∗Σπ = 1.07 is consistent with the confidence interval extracted
from the SU(2)L ⊗ SU(2)R fit, given in eq. (21).

The volume dependence of the Σ mass is found to be somewhat smaller than that of the
Λ mass. This is consistent with the prediction of NLO SU(3)L ⊗ SU(3)R HBχPT, which
is largely driven by the coupling to the decuplet intermediate states. The difference in the
couplings to the decuplet, given in eq. (13), is sufficient to explain the difference in volume
dependence.

5. The Ξ Mass

The Ξ EMP’s and fits to the results of the Lattice QCD calculations on the four lattice
ensembles are shown in fig. 11. The fit values of the Ξ masses in the four lattice volumes are
given in table I, and are shown as the points with uncertainties in fig. 12. The shaded regions
in fig. 12 show the results of the SU(2)L ⊗ SU(2)R HBχPT fit to the volume dependence of
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FIG. 11: The Ξ EMP’s determined on the four lattice ensembles used in this work. They each
result from linear combinations of different correlation functions that optimize the plateau of the
ground state. Note that the y-axis scale is the same in all four panels.

the Ξ mass using eq. (8). The fit parameters are

M (∞)
Ξ = 0.23978(12)(18) t.l.u , |gΞ∗Ξπ| = 2.49(23)(35) . (22)

If instead of fitting gΞ∗Ξπ, the estimates from other observables are used, gΞ∗Ξπ = g∆Nπ/2 =
0.93 [43], the contribution from Ξ intermediate states and from Ξ and Ξ∗ intermediate states
are shown as the dot-dashed (green) and dashed (red) curves in fig. 12, respectively. Com-
paring the expectations with the results of the Lattice QCD calculations, manifested in the
fit value of gΞ∗Ξπ being more than twice expectations, suggest that the pionic contributions
do not dominate the finite-volume corrections, even after considering contributions from
higher orders in SU(2)L⊗SU(2)R HBχPT. As the Ξ carries two strange quarks, one expects
kaon and η loops to make relatively larger finite-volume contributions to the Ξ mass than
to the nucleon, Λ and Σ masses.

The NLO SU(3)L⊗SU(3)R HBχPT prediction from eq. (12) gives rise to the curves shown
in fig. 12. The dot-dashed (green) and dashed (red) curves are the contributions from pions,
while the dotted (orange) and solid (blue) curves correspond to the sum of contributions
from pions, kaons and an η. HBχPT predicts that it is the kaons and η that dominate the
finite-volume contributions to the Ξ mass. The exponential suppression of the kaon and
η contributions is not sufficient to overcome the relatively large axial coupling constants
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FIG. 12: The mass of the Ξ as a function of e−mπL/(mπL). The dark (light) grey shaded region
corresponds to the 1σ statistical uncertainty (statistical and systematic uncertainties combined in

quadrature) resulting from fitting M (∞)
Ξ and gΞ∗Ξπ. Using this value of M (∞)

Ξ , the dot-dashed curve
(green) corresponds to the contribution from octet baryons and pions, the dotted curve (orange)
corresponds to the contribution from octet baryons and kaons or an η, the dashed curve (red)
corresponds to the contribution from octet and decuplet baryons and pions, and the solid curve
(blue) corresponds to the contribution from octet and decuplet baryons and pions, kaons or an η.

at this pion mass. These results suggest that NLO SU(3)L ⊗ SU(3)R HBχPT provides a
good description of the finite-volume modifications to the Ξ mass. Again, one expects NLO
HBχPT to provide an estimate of the finite volume effects that would be modified at the
∼ 30% level by higher orders in the expansion.

6. Summary

The infinite-volume values of the octet-baryon masses fit from the Lattice QCD data using
HBχPT are consistent (almost identical) with the infinite-volume values extracted from
the simple phenomenological fits presented above (see table III for a summary). However,
there are several important lessons that one learns from the HBχPT analysis of the volume
dependence of the octet-baryon masses. First, by comparing, for instance, the dashed (red)
and dot-dashed (green) curves in fig. 5, fig. 8, fig. 10 and fig. 12, one sees the relevance of the
octet-decuplet axial transitions in the description of the finite-volume effects. We conclude
that HBχPT with the decuplet states integrated out does not provide a reliable description
of the finite-volume effects at NLO. Second, by comparing, for instance, the solid (blue)

21



curve and the dashed (red) curve in fig. 5, fig. 8, fig. 10 and fig. 12, one sees the relative
importance of fluctuations to intermediate states involving kaons and/or η, which are not
captured in the two-flavor chiral expansion. While these effects are small in the case of the
nucleon, they are significant for the hyperons at the heavy pion mass at which the Lattice
calculations were performed. Therefore, while SU(2)L ⊗ SU(2)R HBχPT is adequate for
the nucleon, SU(3)L ⊗ SU(3)R HBχPT is necessary to account for the finite-volume effects
experienced by the hyperons 9. This is, of course, due to mK −mπ not being small enough,
and therefore the SU(2)L ⊗ SU(2)R fits for the hyperons will become more reliable as the
physical pion mass is approached. It is worth re-emphasizing that we have not propagated
the uncertainties associated with the input parameters, since these effects are dominated
by the uncertainty associated with neglect of the NNLO corrections, which are generically
expected to be around 30%. One should therefore be aware that the various curves in fig. 5,
fig. 8, fig. 10 and fig. 12 become bands when the input parameter uncertainties are included.

TABLE III: The results of SU(2)L ⊗ SU(2)R HBχPT fits to the volume dependence of the baryon

masses. M (∞)
B is the infinite-volume extrapolation of the baryon mass. The first uncertainty is

statistical, the second is the fitting systematic, and the third (where appropriate) is due to scale
setting.

Hadron M (∞)
B (t.l.u.) M (∞)

B (MeV) Axial Coupling

MN 0.20455(19)(17) 1151.3(1.1)(1.0)(7.5) |g∆Nπ| = 2.80(18)(21)

MΛ 0.22064(15)(19) 1241.9(0.8)(1.1)(8.1) |gΣ∗Λπ| = 2.21(16)(23)

MΣ 0.22747(17)(19) 1280.3(1.0)(1.1)(8.3) 0 < |gΣ∗Σπ| < 1.38[1.90]

MΞ 0.23978(12)(18) 1349.6(0.7)(1.0)(8.8) |gΞ∗Ξπ| = 2.49(23)(35)

C. Combinations of Masses

In addition to examining the volume dependence of the baryon masses, it is interesting to
explore the volume dependence of certain combinations of the masses. In order to minimize
both statistical and systematic uncertainties in determining various combinations of masses
from the Lattice QCD calculation, a correlation function is formed from the individual
baryon correlation functions, from which the combination of masses is extracted.

1. The Centroid of the Octet

The centroid of the baryon octet is the sum of the masses weighted by the isospin degeneracy
of each state,

M8 =
1

8
MΛ +

3

8
MΣ +

1

4
MN +

1

4
MΞ . (23)

9 One should keep in mind that while SU(3)L ⊗ SU(3)R HBχPT seems to account well for the leading

finite-volume effects in the hyperon masses, it is well known to converge poorly for the masses themselves.
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The results of the Lattice QCD calculations are shown in fig. 13, along with the results of a
simple fit of the form described in section IVA. The simple fit gives rise to a centroid mass
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8  baryons + π
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FIG. 13: The centroid of the baryon octet as a function of e−mπL/(mπL). The dark (light)
grey shaded region corresponds to the 1σ statistical uncertainty (statistical and systematic uncer-
tainties combined in quadrature) resulting from fitting the mπL = ∞ value and the coefficient of
e−mπL/(mπL). Using the value at mπL = ∞, the dot-dashed curve (green) corresponds to the con-
tribution from octet baryons and pions, the dotted curve (orange) corresponds to the contribution
from octet baryons and kaons or an η, the dashed curve (red) corresponds to the contribution from
octet and decuplet baryons and pions, and the solid curve (blue) corresponds to the contribution
from octet and decuplet baryons and pions, kaons or an η.

of M (∞)
8 = 0.22354(17)(20) t.l.u = 1255.1(1.0)(1.1)(8.2) MeV. Also shown in fig. 13 are the

predictions of both SU(2)L ⊗ SU(2)R and SU(3)L ⊗ SU(3)R NLO HBχPT resulting from
the same input parameters (not the fit parameters) as those used for the predictions of the
individual baryon masses. In particular, the SU(3) relations between the decuplet-octet axial
coupling constants, and between the octet-octet kaon and η axial couplings, are employed.
Given the overall general agreement between the leading predictions and the individual
baryon masses, it is no surprise that the SU(3)L ⊗ SU(3)R prediction for the centroid mass
of the octet agrees reasonably well with the results of the Lattice QCD calculation.

2. The Σ-Λ Mass Splitting

The mass difference between the Σ and the Λ vanishes in the limit of exact SU(3) symmetry.
In nature, the splitting is found to be MΣ −MΛ ∼ 74 MeV, and consequently, at the pion

23



mass of the Lattice QCD calculations, the calculated splitting is expected to be small. The
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FIG. 14: The Σ-Λ mass difference as a function of e−mπL/(mπL). The dark (light) grey shaded
region corresponds to the 1σ statistical uncertainty (statistical and systematic uncertainties com-
bined in quadrature) resulting from fitting (MΣ − MΛ)(∞) and the coefficient of e−mπL/(mπL).
Using this value of (MΣ −MΛ)(∞), the dot-dashed curve (green) corresponds to the contribution
from octet baryons and pions, the dotted curve (orange) corresponds to the contribution from octet
baryons and kaons or an η, the dashed curve (red) corresponds to the contribution from octet and
decuplet baryons and pions, and the solid curve (blue) corresponds to the contribution from octet
and decuplet baryons and pions, kaons or an η.

results of the Lattice QCD calculation are shown in fig. 14, along with the results of a
simple fit, of the form given in eq. (14), shown as the shaded regions. The result of the
simple fit gives (MΣ −MΛ)(∞) = 0.006598(48)(63) t.l.u = 37.05(27)(35)(24) MeV, which is
approximately half of its value at the physical quark masses. This is, in part, due to the
strange quark mass used in the calculation being a little lighter than its value in nature.
The finite-volume contributions significantly suppress the mass splitting in smaller volumes.

The NLO expressions for the mass splitting do not describe the observed volume depen-
dence well. While the full SU(3)L ⊗ SU(3)R NLO amplitude agrees in its sign with the
volume dependence, the magnitude is significantly smaller than the results of the Lattice
QCD calculations. It is clear that SU(3) breaking contributions that enter at higher orders
in the chiral expansion play an important role in the volume dependence of the Σ-Λ mass
splitting.
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3. The Gell-Mann–Okubo Mass Relation

The GMO relation,

GMO = MΛ +
1

3
MΣ − 2

3
MN − 2

3
MΞ , (24)

vanishes in the limit of exact SU(3) flavor symmetry, and also vanishes in the limit where
the SU(3) breaking transforms as an 8 under SU(3) flavor symmetry. Consequently, it
is a valuable probe of the structure of flavor symmetry breaking, being non-zero only for
breaking that transform in the 27 irreducible representations of SU(3) 10. The results of the
Lattice QCD calculations are shown in fig. 15, along with the results of the simple fit, of
the form given in eq. (14), shown as the shaded regions. Given the smallness of the GMO

0 0.001 0.002 0.003 0.004 0.005 0.006
Exp[-mπL] / mπL

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

b t G
M

O
 

GMO  [m
π
 ~ 390 MeV]

8 baryons + K/η
8 and 10 baryons + π + K/η
8 and 10 baryons + π
8 baryons + π
1σ stat
1σ stat+syst

FIG. 15: The GMO relation as a function of e−mπL/(mπL). The dark (light) grey shaded region
corresponds to the 1σ statistical uncertainty (statistical and systematic uncertainties combined in
quadrature) resulting from fitting the mπL = ∞ value and the coefficient of e−mπL/(mπL). The
dot-dashed curve (green) corresponds to the contribution from octet baryons and pions, the dotted
curve (orange) corresponds to the contribution from octet baryons and kaons or an η, the dashed
curve (red) corresponds to the contribution from octet and decuplet baryons and pions, and the
solid curve (blue) corresponds to the contribution from octet and decuplet baryons and pions,
kaons or an η.

10 Only the symmetric irreps in 8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1 are allowed, i.e. the 27, 8, and 1. By

construction the 8 and 1 cannot contribute.
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combination, it is no surprise that it has a large volume dependence, even changing sign
between the 203 × 128 and the 243 × 128 lattice volumes.

As the GMO relation is sensitive only to the 27 SU(3) breaking, both the finite-volume
and infinite-volume contributions are calculable in SU(3)L ⊗ SU(3)R HBχPT at one loop
(which gives a finite result). It is straightforward to show that the infinite-volume value of
the GMO relation is [19]

GMO(NLO) =
1

24πf 2
π

[(
2

3
D2 − 2F 2

)(
4m3

K − 3m3
η −m3

π

)
− C2

9π
(4FK − 3Fη − Fπ)

]
,(25)

where the function Fc = F (mc,∆, µ) is

F (m,∆, µ) =
(
m2 −∆2

)(√
∆2 −m2 log

(
∆−

√
∆2 −m2 + iε

∆+
√
∆2 −m2 + iε

)
−∆ log

(
m2

µ2

) )

− 1

2
∆m2 log

(
m2

µ2

)
. (26)

We have set fπ = fK in the GMO relation to eliminate formally higher-order contributions
that depend upon the renormalization scale, µ, from this expression. Inserting the values
of the constants and parameters that we have used previously into eq. (26) gives a value
of GMO(NLO) ∼ 6.8 × 10−4 MeV, which is ∼ 50% greater than the extrapolation of the
Lattice QCD results. This is not that surprising given the expected size of the higher-order
contributions in the HBχPT expansion, as well as the fact that this quantity is anomalously
small (suppressed beyond naive expectations based upon SU(3) symmetry alone due to a
further suppression by 1/N2

c in the large-Nc limit of QCD 11).
The NLO predictions of the volume dependence of the GMO relation in SU(2)L⊗SU(2)R

and SU(3)L ⊗ SU(3)R HBχPT are shown in fig. 15. The contribution from the kaons and
the η are of opposite sign to that from the pion (as expected from their cancellation in the
SU(3) limit), which gives rise to a small volume dependence, even on the scale of fig. 15.
The predictions for the volume dependence of the GMO relation are in clear contradiction
with the results of the Lattice QCD calculations. Clearly NLO HBχPT does not describe
the higher-dimensional SU(3) breaking that provides the finite-volume dependence of the
GMO relation, and we have found that this relation is particularly sensitive to the volume
of the lattice.

The GMO relation was previously explored by some of the present authors [45, 46]. At
approximately the same pion mass, and in the volume with L ∼ 2.5 fm, the GMO relation
was found to be positive and consistent with the loop-level expression given in eq. (26).
Those calculations were performed with domain-wall (DW) valence quarks on MILC gauge-
field configurations generated with staggered quarks in the sea. In the present calculation
we find a negative value of the GMO relation at that particular volume, and with a much
smaller associated uncertainty. We do not understand the source of the discrepancy between
the two calculations at present. The DW on MILC calculation used a somewhat heavier
strange mass than the present calculations, and had partial-quenching effects that were not
accounted for systematically in χPT. In addition, the lattice spacing artifacts at O(b2) in

11 If ε ∼ ms−mu,d denotes the SU(3) breaking parameter, then the GMO relation scales as ∼ ε2/N2
c relative

the the baryon masses. For a review, see Ref. [44].
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the two calculations are different. And, of course, it is possible that the difference between
the calculations is due to an underestimate of systematic errors due to these various effects
and/or others, or due to a statistical fluctuation.

4. The R4 Mass Relation

The R4 relation, defined to be

R4 =
1

6
( MN +MΛ + MΞ − 3MΣ ) , (27)

vanishes in the limit of exact SU(3) flavor symmetry, and is formally dominated by a single
insertion of the light-quark mass matrix in the infinite volume limit. This relation is of
phenomenological interest because not only does it vanish in the limit of exact SU(3) flavor
symmetry, but it also vanishes in the large-Nc limit of QCD [44, 47, 48], scaling as ∼ ε/Nc

relative to the baryon masses (ε is defined in the footnote in Section IVC3). Recently,
this relation, along with other relations among masses were examined with Lattice QCD
calculations in work by Jenkins et al [48] using domain-wall light-quark and strange-quark
propagators generated by LHPC and by NPLQCD on a number of ensembles of MILC
staggered gauge-field configurations. The results of the present Lattice QCD calculations are
shown in fig. 16, along with the results of the simple fit, of the form given in eq. (14), shown

as the shaded regions. The result of the simple fit gives R(∞)
4 = −0.002757(27)(40) t.l.u =

−15.48(15)(22)(09) MeV, which is approximately half of its value at the physical quark
masses, Rexpt

4 = −34.5 MeV. The finite-volume contributions significantly suppress the
mass splitting in smaller volumes.

The NLO expressions for R4 do not describe the observed volume dependence well. While
the full SU(3)L⊗SU(3)R NLO amplitude agrees in its sign with the volume dependence, the
magnitude is significantly smaller than the results of the Lattice QCD calculations. SU(3)
breaking contributions that enter beyond NLO in HBχPT play an important role in the R4

mass relation.

V. THE VOLUME DEPENDENCE OF THE MESON MASSES

It is also interesting to explore the volume dependence of the meson masses, specifically
that of the pion and the kaon. There has been significantly more theoretical and numerical
exploration of the meson masses and how they depend upon the volume of the lattices used
in Lattice QCD calculations. The theoretical status of such finite-volume contributions can
be found in Ref. [49].

The results of the present Lattice QCD calculations of the meson masses in the four
different lattice volumes are given in table IV and the EMP’s are shown in fig. 17 and
fig. 18.
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FIG. 16: The R4 mass relation as a function of e−mπL/(mπL). The dark (light) grey shaded region
corresponds to the 1σ statistical uncertainty (statistical and systematic uncertainties combined in
quadrature) resulting from fitting the mπL = ∞ value and the coefficient of e−mπL/(mπL). The
dot-dashed curve (green) corresponds to the contribution from octet baryons and pions, the dotted
curve (orange) corresponds to the contribution from octet baryons and kaons or an η, the dashed
curve (red) corresponds to the contribution from octet and decuplet baryons and pions, and the
solid curve (blue) corresponds to the contribution from octet and decuplet baryons and pions,
kaons or an η.

TABLE IV: Meson masses from the Lattice QCD calculations in the four lattice volumes.

L3 × T 163 × 128 203 × 128 243 × 128 323 × 256

mπ (t.l.u.) 0.06943(36)(0) 0.06936(12)(0) 0.06903(19)(0) 0.069060(66)(81)

mK (t.l.u.) 0.09722(26)(0) 0.09702(10)(03) 0.09684(15)(01) 0.096984(78)(60)

A. The Pion Mass

The finite-volume contribution to the mass of the pion in SU(2)L ⊗ SU(2)R χPT is given
by [11]

mπ(L)−mπ(∞) =
3m3

π

4π2f 2
π

1

mπL

[
K1(mπL) +

√
2K1(

√
2mπL) +

4

3
√
3
K1(

√
3mπL) + . . .

]
(28)

whereK1(x) is the modified Bessel function. The meson masses have different overall volume
scaling to the baryons, due to the absence of a three-meson vertex. As K1(z) → e−z/

√
z, the
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FIG. 17: The pion EMP’s determined on the four lattice ensembles used in this work. Note that
the y-axis scale is the same in all four panels.

results of the Lattice QCD calculations are shown in fig. 19 as a function of e−mπL/(mπL)3/2

rather than e−mπL/(mπL) that was used for the baryons. Consequently, the naive fit that
we perform to the meson masses is of the form

m(V )
M (mπL) = m(∞)

M + c(V )
M

e−mπ L

(mπL)3/2
. (29)

It should be said that with the current precision of the Lattice QCD calculation, fit-
ting cannot distinguish between the fit forms of e−mπL/(mπL) and e−mπL/(mπL)3/2

with statistical significance. The fit parameters are m(∞)
π = 0.069073(63)(62) t.l.u. =

387.8(0.4)(0.4)(2.5) MeV and c(V )
π = 0.23(12)(07) t.l.u. = (1.30(65)(39)(0))× 103 MeV.

At NLO in SU(3)L ⊗ SU(3)R χPT, the finite-volume corrections to the pion mass are
given by [49]

δmπ =
3m3

π

4π2f 2
π

1

mπL

[
K1(mπL) +

√
2K1(

√
2mπL) +

4

3
√
3
K1(

√
3mπL) + ...

]

−
mπm2

η

4π2f 2
η

1

mηL

[
K1(mηL) +

√
2K1(

√
2mηL) +

4

3
√
3
K1(

√
3mηL) + ...

]
.(30)

Using the value of m(∞)
π found in the fit to the form in eq. (29), the predicted volume

dependence is shown in fig. 19 as the solid ( SU(3)L⊗SU(3)R) and dashed curves ( SU(2)L⊗
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FIG. 18: The kaon EMP’s determined on the four lattice ensembles used in this work. Note that
the y-axis scale is the same in all four panels.

SU(2)R). The volume dependence that is found in the Lattice QCD calculations agrees with
the expectations of NLO χPT, and is significantly smaller than that of the baryon masses.

B. The Kaon Mass

The formalism describing the volume dependence of the kaon mass is analogous to that of
the pion. The NLO calculation in SU(3)L ⊗ SU(3)R χPT gives [49]

δmK =
mKm2

η

2π2f 2
η

1

mηL

[
K1(mηL) +

√
2K1(

√
2mηL) +

4

3
√
3
K1(

√
3mηL) + ...

]
.(31)

The results of the Lattice QCD calculation, given in table IV, are shown in fig. 20,
along with a fit to the form given in eq. (29). The resulting fit values are m(∞)

K =

0.096953(68)(39) t.l.u. = 544.4(0.4)(0.2)(3.5) MeV and c(V )
K = 0.087(93)(44) t.l.u. =

(4.9(5.2)(2.5)(0)) × 102 MeV. The volume dependence of the kaon is found to be very
small, much smaller than that of the baryons, and is consistent with the absence of pion
loop contributions.
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FIG. 19: The mass of the pion as a function of e−mπL/(mπL)3/2. The points and associated
uncertainties (blue) are the results of the Lattice QCD calculations, as given in table IV. The
dark (light) shaded region corresponds to the 1σ statistical uncertainty (statistical and systematic
uncertainties combined in quadrature) associated with a fit of the form given in eq. (29). The solid
(red) curve corresponds to the prediction of NLO SU(3)L⊗SU(3)R χPT, while the dashed (green)

curve corresponds to the prediction of NLO SU(2)L ⊗ SU(2)R χPT using the value of m(∞)
π found

in the fit.

VI. CONCLUSIONS

We have performed precise Lattice QCD calculations of the low-lying hadron masses at a
pion mass ofmπ ∼ 389 MeV in four ensembles of anisotropic clover gauge-field configurations
with a spatial lattice spacing of bs ∼ 0.123 fm, an anisotropy of ξ = 3.5 and cubic spatial
lattice volumes with extent L ∼ 2.0, 2.5, 3.0 and 3.9 fm. These calculations have allowed for
a detailed exploration of the volume dependence of the octet baryon masses and of the pion
and the kaon masses.

Our main conclusions are as follows:

• In order to calculate individual baryon masses with percent-level precision (±10 MeV),
it is sufficient to work in volumes withmπL>∼ 4.3 formπ ∼ 389 MeV, and NLO HBχPT
indicates that somewhat smaller values ofmπLmay be sufficient at lighter pion masses.

• The expectations of NLO SU(3)L ⊗ SU(3)R HBχPT (with the meson decay constants
evaluated at the appropriate meson mass) are found to qualitatively reproduce the
lattice results for for the volume dependence of all of the baryon and meson masses.
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FIG. 20: The mass of the kaon as a function of e−mπL/(mπL)3/2. The points and associated
uncertainties (blue) are the results of the Lattice QCD calculations, as given in table IV. The
dark (light) shaded region corresponds to the 1σ statistical uncertainty (statistical and systematic
uncertainties combined in quadrature) associated with a fit of the form given in eq. (29). The solid
(red) curve corresponds to the prediction of NLO SU(3)L ⊗ SU(3)R χPT.

The NLO SU(3)L⊗SU(3)R predictions are sufficiently accurate to allow for meaningful
extrapolations to lighter pion masses to be made, where the volume dependences are
expected to be significantly smaller. This feature allows for gauge-field configurations
with somewhat (logarithmically) smaller values of mπL to be used for the calculation
of the interactions between baryons while keeping the exponential corrections to the
Lüscher eigenvalue relation from single hadron masses negligibly small. A Lattice QCD
calculation at the physical pion mass and in a volume with mπL = 5.8 is predicted
to generate finite-volume corrections to the nucleon mass of δMN ∼ 100 keV, smaller
than the typical nuclear excitation energies found in light nuclei.

• Given the size of the contribution to the masses of the hyperons from kaon and η-loops
in SU(3)L ⊗ SU(3)R HBχPT, we have been unable to make significant predictions for
the hyperon axial coupling constants. However, we have found a relatively stable
prediction for |g∆Nπ|/gA which can be improved by going to higher orders in HBχPT.
Lattice QCD calculations at lighter pion masses should enable a determination of
hyperon axial couplings as well. This provides an indirect method with which to
determine the axial coupling constants.

• The GMO relation is found to exhibit substantial volume dependence, with the re-
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lation changing sign at mπL ∼ 5.2 with mπ ∼ 389 MeV. Perhaps this should not
be surprising given the delicate cancellations that occur between the baryon masses
to leave a quantity that depends only upon SU(3)-breaking in the 27-dimensional ir-
reducible representation and vanishes in the large-Nc limit as 1/N2

c compared to the
individual baryon masses.

• Comparing the volume dependence of the baryon masses and of the pion and kaon
masses, both in the results of the Lattice QCD calculations, and from the expectations
from (HB)χPT, it is clear that if the mesons exhibit noticeable finite-volume effects,
then the baryon masses will be far from their infinite-volume limit and consequently
exponential corrections to Lüscher eigenvalue relation will be large. This may well be a
useful “rule of thumb” to be used in future lattice calculations of hadronic interactions.
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